Fast multipole method applied to Symmetric Galerkin boundary element method for 3D elasticity and fracture problems

Autor: Anh Duc Pham, Cyrille Chazallon, Saida Mouhoubi, Marc Bonnet
Přispěvatelé: Laboratoire de Génie de la Conception (LGeco), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2012
Předmět:
Zdroj: Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements, Elsevier, 2012, 36, pp.1838-1847. ⟨10.1016/j.enganabound.2012.07.004⟩
ISSN: 0955-7997
Popis: International audience; The solution of three-dimensional elastostatic problems using the Symmetric Galerkin Boundary Element Method (SGBEM) gives rise to fully-populated (albeit symmetric) matrix equations, entailing high solution times for large models. This article is concerned with the formulation and implementation of a multi-level fast multipole SGBEM (FM-SGBEM) for elastic solid with cracks. Arbitrary geometries and boundary conditions may be considered. Numerical results on test problems involving a cube, single or multiple cracks in an unbounded medium, and a cracked cylindrical solid are presented. BEM models involving up to $10^{6}$ BEM unknowns are considered, and the desirable predicted trends of the elastostatic FM-SGBEM, such as a $O(N)$ complexity per iteration, are verified.
Databáze: OpenAIRE