Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy
Autor: | Filippo Petti, John D. Haley, Izabela Sujka-Kwok, David Epstein, Stuart Thomson |
---|---|
Rok vydání: | 2008 |
Předmět: |
Cancer Research
Lung Neoplasms Receptor ErbB-3 Receptor ErbB-2 Receptor tyrosine kinase Mesoderm chemistry.chemical_compound Transforming Growth Factor beta Carcinoma Non-Small-Cell Lung Tumor Cells Cultured ERBB3 Receptors Platelet-Derived Growth Factor Phosphorylation biology Reverse Transcriptase Polymerase Chain Reaction General Medicine Protein-Tyrosine Kinases Cell biology ErbB Receptors Oncology embryonic structures Quinolines Signal transduction Mitogen-Activated Protein Kinases Tyrosine kinase Platelet-derived growth factor receptor Signal Transduction Spectrometry Mass Electrospray Ionization Immunoblotting Respiratory Mucosa Thiophenes Erlotinib Hydrochloride Humans RNA Messenger Autocrine signalling Protein Kinase Inhibitors Cell Proliferation Mitogen-Activated Protein Kinase Kinases Tyrosine phosphorylation Transforming growth factor beta Receptors Fibroblast Growth Factor Pyrimidines chemistry Drug Resistance Neoplasm biology.protein Cancer research Quinazolines Benzimidazoles Proto-Oncogene Proteins c-akt Chromatography Liquid |
Zdroj: | Clinicalexperimental metastasis. 25(8) |
ISSN: | 1573-7276 |
Popis: | NSCLC cells with a mesenchymal phenotype have shown a marked reduction in sensitivity to EGFR inhibitors, though the molecular rationale has remained obscure. Here we find that in mesenchymal-like tumor cells both tyrosine phosphorylation of EGFR, ErbB2, and ErbB3 signaling networks and expression of EGFR family ligands were decreased. While chronic activation of EGFR can promote an EMT-like transition, once having occurred EGFR family signaling was attenuated. We investigated the mechanisms by which mesenchymal-like cells bypass EGFR signaling and acquire alternative routes of proliferative and survival signaling. Mesenchymal-like NSCLC cells exhibit aberrant PDGFR and FGFR expression and autocrine signaling through these receptors can activate the MEK-ERK and PI3K pathways. Selective pharmacological inhibition of PDGFR or FGFR receptor tyrosine kinases reduced cell proliferation in mesenchymal-like but not epithelial NSCLC cell lines. A metastable, reversible EMT-like transition in the NSCLC line H358 was achieved by exogenous TGFbeta, which served as a model EMT system. The H358/TGFbeta cells showed many of the attributes of established mesenchymal-like NSCLC cells including a loss of cell-cell junctions, a loss of EGF-family ligand expression, a loss of ErbB3 expression, increased EGFR-independent Mek-Erk pathway activation and reduced sensitivity to EGFR inhibition. Notably an EMT-dependent acquisition of PDGFR, FGFR and TGFbeta receptors in H358/TGFbeta cells was also observed. In H358/TGFbeta cells both PDGFR and FGFR showed functional ligand stimulation of their intrinsic tyrosine kinase activities. The findings of kinase switching and acquired PDGFR and FGFR signaling suggest investigation of new inhibitor combinations to target NSCLC metastases. |
Databáze: | OpenAIRE |
Externí odkaz: |