Pseudo S-asymptotically periodic solutions of second-order abstract Cauchy problems
Autor: | Michelle Pierri, Vanessa Rolnik, Hernán R. Henríquez |
---|---|
Rok vydání: | 2016 |
Předmět: |
Cauchy problem
MATEMÁTICA APLICADA Work (thermodynamics) Applied Mathematics 010102 general mathematics Mathematical analysis Cauchy distribution Wave equation 01 natural sciences 010101 applied mathematics Computational Mathematics Trigonometric functions Applied mathematics Order (group theory) 0101 mathematics Mathematics |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
ISSN: | 0096-3003 |
DOI: | 10.1016/j.amc.2015.11.034 |
Popis: | In this work we discuss the existence of pseudo S -asymptotically periodic mild solutions for a second order abstract Cauchy problem. In particular, we show that pseudo S -asymptotically ω-periodic cosine functions of operators are ω-periodic. The paper is completed with an application to the nonautonomous wave equation. |
Databáze: | OpenAIRE |
Externí odkaz: |