Asymptotics of even-even correlations in the Ising model

Autor: Sébastien Ott, Yvan Velenik
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Statistics and Probability
Ornstein-Zernike asymptotics
Power-law corrections
FOS: Physical sciences
Condensed Matter::Disordered Systems and Neural Networks
01 natural sciences
Condensed Matter::Materials Science
010104 statistics & probability
Cardinality
Ising model
FOS: Mathematics
Beta (velocity)
0101 mathematics
Exponential decay
ddc:510
Even-even correlations
Finite set
Condensed Matter - Statistical Mechanics
Mathematical Physics
Mathematics
Mathematical physics
Statistical Mechanics (cond-mat.stat-mech)
Decay of correlations
Probability (math.PR)
010102 general mathematics
Sigma
Mathematical Physics (math-ph)
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
Mathematics::Logic
Condensed Matter::Statistical Mechanics
Condensed Matter::Strongly Correlated Electrons
Statistics
Probability and Uncertainty

Analysis
Mathematics - Probability
Zdroj: Probability Theory and Related Fields, Vol. 175 (2019) pp. 309-340
ISSN: 1432-2064
Popis: We consider finite-range ferromagnetic Ising models on $\mathbb{Z}^d$ in the regime $\beta
Comment: Changed section numbering to match the published version
Databáze: OpenAIRE