Une interpr\'etation modulaire de la vari\'et\'e trianguline

Autor: Eugen Hellmann, Benjamin Schraen, Christophe Breuil
Přispěvatelé: Laboratoire de Mathématiques d'Orsay (LM-Orsay), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-11-BS01-0005,ThéHopaD,Théorie de Hodge p-adique et développements(2011)
Jazyk: francouzština
Rok vydání: 2014
Předmět:
Zdroj: Mathematische Annalen
Mathematische Annalen, Springer Verlag, 2016, 367 (3-4), pp.1587--1645. ⟨10.1007/s00208-016-1422-1⟩
ISSN: 0025-5831
1432-1807
DOI: 10.1007/s00208-016-1422-1⟩
Popis: Using a patching module constructed in recent work of Caraiani, Emerton, Gee, Geraghty, Pa{\v{s}}k{\=u}nas and Shin we construct some kind of analogue of an eigenvariety. We can show that this patched eigenvariety agrees with a union of irreducible components of a space of trianguline Galois representations. Building on this we discuss the relation with the modularity conjectures for the crystalline case, a conjecture of Breuil on the locally analytic socle of representations occurring in completed cohomology and with a conjecture of Bella\"iche and Chenevier on the complete local ring at certain points of eigenvarieties.
Comment: in French
Databáze: OpenAIRE