Strongly modular models of Q-curves

Autor: Peter Bruin, Andrea Ferraguti
Přispěvatelé: Bruin, Peter, Ferraguti, Andrea
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: International Journal of Number Theory, 15(3), 505-526. World Scientific Pub Co Pte Lt
Popis: Let [Formula: see text] be a [Formula: see text]-curve without complex multiplication. We address the problem of deciding whether [Formula: see text] is geometrically isomorphic to a strongly modular [Formula: see text]-curve. We show that the question has a positive answer if and only if [Formula: see text] has a model that is completely defined over an abelian number field. Next, if [Formula: see text] is completely defined over a quadratic or biquadratic number field [Formula: see text], we classify all strongly modular twists of [Formula: see text] over [Formula: see text] in terms of the arithmetic of [Formula: see text]. Moreover, we show how to determine which of these twists come, up to isogeny, from a subfield of [Formula: see text].
Databáze: OpenAIRE