Expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta and Gamma functions

Autor: Mariam Gevorgyan, Yevgenya Pashayan-Leroy, T. A. Ishkhanyan, Artur Ishkhanyan, Claude Leroy
Přispěvatelé: Institut de Mathématiques de Bourgogne [Dijon] (IMB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bourgogne [Dijon] ( IMB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: J.Contemp.Phys.
J.Contemp.Phys., 2016, 51 (3), pp.229-236. ⟨10.3103/S106833721603004X⟩
J.Contemp.Phys., 2016, 51 (3), pp.229-236. 〈10.3103/S106833721603004X〉
DOI: 10.3103/S106833721603004X⟩
Popis: International audience; Considering the equations for some functions involving the first or the second derivatives of the biconfluent Heun function, we construct two expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta functions. The first series applies single Beta functions as expansion functions, while the second one involves a combination of two Beta functions. The coefficients of expansions obey four- and five-term recurrence relations, respectively. It is shown that the proposed technique is potent to produce series solutions in terms of other special functions. Two examples of such expansions in terms of the incomplete Gamma functions are presented.
Databáze: OpenAIRE