Goodness-of-Fit tests with Dependent Observations

Autor: Rémy Chicheportiche, Jean-Philippe Bouchaud
Přispěvatelé: Science et Finance, Mathématiques Appliquées aux Systèmes - EA 4037 (MAS), Ecole Centrale Paris, Chaire de finance quantitative (FiQuant), Mathématiques et Informatique pour la Complexité et les Systèmes (MICS), CentraleSupélec-CentraleSupélec
Jazyk: angličtina
Rok vydání: 2011
Předmět:
FOS: Computer and information sciences
Statistics and Probability
Independent and identically distributed random variables
Statistics::Theory
Generalization
FOS: Physical sciences
Statistics::Other Statistics
Bivariate analysis
Statistics - Applications
extreme value statistics
FOS: Economics and business
Goodness of fit
Statistics
Applications (stat.AP)
Extreme value theory
05.40.-a
02.30.Lt
89.65.Gh
60F05
60G50
91B84
62M10
62P20
Condensed Matter - Statistical Mechanics
Mathematics
91B84
62P20
62M10
60F05

[STAT.AP]Statistics [stat]/Applications [stat.AP]
Statistical Finance (q-fin.ST)
Statistical Mechanics (cond-mat.stat-mech)
Stochastic process
Univariate
models of financial markets
Quantitative Finance - Statistical Finance
Statistical and Nonlinear Physics
[QFIN.ST]Quantitative Finance [q-fin]/Statistical Finance [q-fin.ST]
Statistics::Computation
stochastic processes
Statistics
Probability and Uncertainty

Random variable
Zdroj: Journal of Statistical Mechanics: Theory and Experiment
Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2011, 2011 (9), pp.P09003. ⟨10.1088/1742-5468/2011/09/P09003⟩
ISSN: 1742-5468
DOI: 10.1088/1742-5468/2011/09/P09003⟩
Popis: We revisit the Kolmogorov-Smirnov and Cram\'er-von Mises goodness-of-fit (GoF) tests and propose a generalisation to identically distributed, but dependent univariate random variables. We show that the dependence leads to a reduction of the "effective" number of independent observations. The generalised GoF tests are not distribution-free but rather depend on all the lagged bivariate copulas. These objects, that we call "self-copulas", encode all the non-linear temporal dependences. We introduce a specific, log-normal model for these self-copulas, for which a number of analytical results are derived. An application to financial time series is provided. As is well known, the dependence is to be long-ranged in this case, a finding that we confirm using self-copulas. As a consequence, the acceptance rates for GoF tests are substantially higher than if the returns were iid random variables.
Comment: 26 pages
Databáze: OpenAIRE