On the welded Tube map
Autor: | Benjamin Audoux |
---|---|
Přispěvatelé: | Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), ANR-11-JS01-0002,VasKho,De Vassiliev à Khovanov – Invariants de type fini et Categorification pour les objets noués(2011) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
010102 general mathematics
Geometric Topology (math.GT) Geometry Torus welded knots Welding 01 natural sciences Mathematics::Geometric Topology Virtual knot Tube map law.invention Mathematics - Geometric Topology 57Q45 law [MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] 0103 physical sciences Ribbon FOS: Mathematics 010307 mathematical physics 0101 mathematics Tube (container) ribbon 2--knots Mathematics::Symplectic Geometry Quotient Mathematics |
Zdroj: | Knot theory and its applications. ICTS program knot theory and its applications (KTH-2013), IISER Mohali, India, December 10--20, 2013 Knot theory and its applications. ICTS program knot theory and its applications (KTH-2013), IISER Mohali, India, December 10--20, 2013, 2016, ⟨10.1090/conm/670/13457⟩ |
DOI: | 10.1090/conm/670/13457⟩ |
Popis: | This note investigates the so-called Tube map which connects welded knots, that is a quotient of the virtual knot theory, to ribbon torus-knots, that is a restricted notion of fillable knotted tori in the 4-sphere. It emphasizes the fact that ribbon torus-knots with a given filling are in one-to-one correspondence with welded knots before quotient under classical Reidemeister moves and reformulates these moves and the known sources of non-injectivity of the Tube map in terms of filling changes. 23 pages ; v2: an error corrected and stylistic modifications ; to appear in Contemporary Mathematics |
Databáze: | OpenAIRE |
Externí odkaz: |