On Eigenfunctions and Eigenvalues of a Nonlocal Laplace Operator with Multiple Involution
Autor: | Valery Karachik, Batirkhan Kh. Turmetov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Unit sphere
Laplace's equation Dirichlet problem Pure mathematics Physics and Astronomy (miscellaneous) General Mathematics eigenvalues eigenfunctions Mathematics::Spectral Theory multiple involution nonlocal Laplace operator Chemistry (miscellaneous) Completeness (order theory) Computer Science (miscellaneous) QA1-939 Involution (philosophy) Boundary value problem Laplace operator Eigenvalues and eigenvectors Mathematics |
Zdroj: | Symmetry, Vol 13, Iss 1781, p 1781 (2021) Symmetry Volume 13 Issue 10 |
ISSN: | 2073-8994 |
Popis: | We study the eigenfunctions and eigenvalues of the boundary value problem for the nonlocal Laplace equation with multiple involution. An explicit form of the eigenfunctions and eigenvalues for the unit ball are obtained. A theorem on the completeness of the eigenfunctions of the problem under consideration is proved. |
Databáze: | OpenAIRE |
Externí odkaz: |