Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation
Autor: | Silvia Berteotti, Christian Wilhelm, Matteo Ballottari, Kerstin Flieger, Roberto Bassi, Theresa Quaas, Reimund Goss |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Chlorophyll
Light Physiology Acclimatization photoprotection photosynthesis Chlamydomonas reinhardtii Plant Science Xanthophylls Fluorescence chemistry.chemical_compound Algae Species Specificity Chlorophyta Botany chemistry.chemical_classification Pedinomonas biology Non-photochemical quenching Chlorophyll A biology.organism_classification chemistry Xanthophyll Photoprotection Green algae Agronomy and Crop Science Violaxanthin |
Popis: | In the present study the non-photochemical quenching (NPQ) of four biofilm-forming and two planktonic green algae was investigated by fluorescence measurements, determinations of the light-driven proton gradient and determination of the violaxanthin cycle activity by pigment analysis. It was observed that, despite the common need for efficient photoprotection, the structural basis of NPQ was heterogeneous in the different species. Three species, namely Chlorella saccharophila, Chlorella vulgaris and Bracteacoccus minor, exhibited a zeaxanthin-dependent NPQ, while in the three other species, Tetracystis aeria, Pedinomonas minor and Chlamydomonas reinhardtii violaxanthin de-epoxidation was absent or unrelated to the establishment of NPQ. Acclimation of the algae to high light conditions induced an increase of the NPQ activity, suggesting that a significant part of the overall NPQ was rather inducible than constitutively present in the green algae. Comparing the differences in the NPQ mechanisms with the phylogenetic position of the six algal species led to the conclusion that the NPQ heterogeneity observed in the present study was not related to the phylogeny of the algae but to the environmental selection pressure. Finally, the difference in the NPQ mechanisms in the different species is discussed within the frame of the current NPQ models. |
Databáze: | OpenAIRE |
Externí odkaz: |