Combining Ensemble Transform Kalman Filter and FWI for Assessing Uncertainties

Autor: Romain Brossier, Ludovic Métivier, Julien Thurin
Přispěvatelé: Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Equations aux Dérivées Partielles (EDP ), Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Rok vydání: 2019
Předmět:
Zdroj: 81st EAGE Conference and Exhibition 2019 Workshop Programme
81st EAGE Conference and Exhibition 2019 Workshop Programme, Jun 2019, London, United Kingdom. ⟨10.3997/2214-4609.201901997⟩
DOI: 10.3997/2214-4609.201901997
Popis: International audience; Full Waveform Inversion (FWI) is an iterative inversion method whose purpose is to retrieve high-resolution models of subsurface physical parameters. Because FWI relies on the solution of a non-linear ill-posed inverse problem, uncertainty estimation is a crucial issue in practical applications, both in seismology and exploration seismic. While uncertainty assessment is a strongly desired feature for FWI, it remains a challenging problem. In this presentation, we investigate uncertainty estimation within the framework provided by ensemble data-assimilation strategies. We combine the Ensemble Transform Kalman Filter and FWI. We review the concepts underlying our ETKF-FWI method, discuss its limitations and appeals for uncertainty estimation, and illustrate it on a 2D multiparameter inversion of an exploration scale field dataset.
Databáze: OpenAIRE