Phase transitions in layered systems
Autor: | Luiz Renato Fontes, Maria Eulalia Vares, Domingos H. U. Marchetti, Immacolata Merola, Errico Presutti |
---|---|
Rok vydání: | 2014 |
Předmět: |
Phase transition
Condensed matter physics 60K35 82B20 Astrophysics::High Energy Astrophysical Phenomena Probability (math.PR) Statistical and Nonlinear Physics Critical value Square lattice Horizontal line test k-nearest neighbors algorithm Peierls estimates Ferromagnetism Mean field theory Kac potentials Phase transitions FOS: Mathematics Ising model MODELO DE ISING Mathematics - Probability Mathematical Physics Mathematics |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
DOI: | 10.48550/arxiv.1406.3293 |
Popis: | We consider the Ising model on the two-dimensional square lattice where on each horizontal line, called "layer", the interaction is given by a ferromagnetic Kac potential with coupling strength $J_\gamma(x,y)=\gamma J(\gamma(x-y))$, where $J(\cdot)$ is smooth and has compact support; we then add a nearest neighbor ferromagnetic vertical interaction of strength $\gamma^{A}$ (where $A\ge 2$ is fixed) and prove that for any $\beta$ (inverse temperature) larger than the mean field critical value there is a phase transition for all $\gamma$ small enough. Comment: 17 pages. Final version. Published in Journal of Statistical Physics (2014), volume 157, 407-421 |
Databáze: | OpenAIRE |
Externí odkaz: |