Coloring linear hypergraphs: the Erdős–Faber–Lovász conjecture and the Combinatorial Nullstellensatz

Autor: Oliver Janzer, Zoltán Lóránt Nagy
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Designs, Codes and Cryptography, 90 (9)
ISSN: 0925-1022
1573-7586
DOI: 10.3929/ethz-b-000495133
Popis: The long-standing Erdos-Faber-Lovasz conjecture states that every n-uniform linear hypergaph with n edges has a proper vertex-coloring using n colors. In this paper we propose an algebraic framework to the problem and formulate a corresponding stronger conjecture. Using the Combinatorial Nullstellensatz, we reduce the Erdos-Faber-Lovasz conjecture to the existence of non-zero coefficients in certain polynomials. These coefficients are in turn related to the number of orientations with prescribed in-degree sequences of some auxiliary graphs. We prove the existence of certain orientations, which verifies a necessary condition for our algebraic approach to work.
Designs, Codes and Cryptography, 90 (9)
ISSN:0925-1022
ISSN:1573-7586
Databáze: OpenAIRE