An immersed boundary-lattice Boltzmann model for biofilm growth in porous media
Autor: | C. Oltean, J. Cuny, T. Bahar, M. Benioug, Michel Buès, Fabrice Golfier |
---|---|
Přispěvatelé: | GeoRessources, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), French Scientific Interest Group - Industrial Wasteland (GISFI) program., ANR-10-BLAN-0908,MOBIOPOR,Modélisation de la biodégradation de polluants en milieu poreux: de la bactérie à l'échelle du terrain(2010) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Materials science
[SDE.IE]Environmental Sciences/Environmental Engineering [SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment 0208 environmental biotechnology Biofilm 02 engineering and technology Mechanics 010501 environmental sciences Immersed boundary method 01 natural sciences 020801 environmental engineering law.invention Quantitative Biology::Cell Behavior Physics::Fluid Dynamics law Volume fraction Shear stress Fluid dynamics Geotechnical engineering Hydrostatic equilibrium Porous medium 0105 earth and related environmental sciences Water Science and Technology Dimensionless quantity |
Zdroj: | Advances in Water Resources Advances in Water Resources, Elsevier, 2017, 107, pp.65-82. ⟨10.1016/j.advwatres.2017.06.009⟩ |
ISSN: | 0309-1708 |
DOI: | 10.1016/j.advwatres.2017.06.009⟩ |
Popis: | International audience; In this paper, we present a two-dimensional pore-scale numerical model to investigate the main mechanisms governing biofilm growth in porous media. The fluid flow and solute transport equations are coupled with a biofilm evolution model. Fluid flow is simulated with an immersed boundary-lattice Boltz-mann model while solute transport is described with a volume-of-fluid-type approach. A cellular automaton algorithm combined with immersed boundary methods was developed to describe the spreading and distribution of biomass. Bacterial attachment and detachment mechanisms are also taken into account. The capability of this model to describe correctly the couplings involved between fluid circulation, nutrient transport and bacterial growth is tested under different hydrostatic and hydrodynamic conditions (i) on a flat medium and (ii) for a complex porous medium. For the second case, different regimes of biofilm growth are identified and are found to be related to the dimensionless parameters of the model, Damköhler and Péclet numbers and dimensionless shear stress. Finally, the impact of biofilm growth on the macroscopic properties of the porous medium is investigated and we discuss the unicity of the relationships between hydraulic conductivity and biofilm volume fraction. |
Databáze: | OpenAIRE |
Externí odkaz: |