One can't hear orientability of surfaces

Autor: David L. Webb, Pierre Bérard
Přispěvatelé: Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mathematische Zeitschrift
Mathematische Zeitschrift, Springer, 2021, https://doi.org/10.1007/s00209-021-02758-y
ISSN: 0025-5874
1432-1823
DOI: 10.1007/s00209-021-02758-y
Popis: The main result of this paper is that one cannot hear orientability of a surface with boundary. More precisely, we construct two isospectral flat surfaces with boundary with the same Neumann spectrum, one orientable, the other non-orientable. For this purpose, we apply Sunada's and Buser's methods in the framework of orbifolds. Choosing a symmetric tile in our construction, and adapting a folklore argument of Fefferman, we also show that the surfaces have different Dirichlet spectra. These results were announced in the {\it C. R. Acad. Sci. Paris S\'er. I Math.}, volume 320 in 1995, but the full proofs so far have only circulated in preprint form.
Comment: Minor changes. Accepted for publication in Mathematische Zeitschrift
Databáze: OpenAIRE