How to induce superconductivity in epitaxial graphene via remote proximity effect through an intercalated gold layer
Autor: | Sergio Vlaic, Estelle Mazaleyrat, Dimitri Roditchev, Thomas Vincent, Alexandre Artaud, Simone Lisi, Ana Cristina Gómez-Herrero, Philippe David, Johann Coraux, Stéphane Pons, Nedjma Bendiab, Claude Chapelier, Laurence Magaud, Valérie Guisset, Priyank Singh |
---|---|
Přispěvatelé: | Systèmes hybrides de basse dimensionnalité (HYBRID), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Epitaxie et couches minces (EpiCM), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire de Transport Electronique Quantique et Supraconductivité (LaTEQS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Systèmes hybrides de basse dimensionnalité (NEEL - HYBRID), Epitaxie et couches minces (NEEL- EpiCM), Laboratoire de Physique et d'Etude des Matériaux (LPEM), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut polytechnique de Grenoble - Grenoble Institute of Technology [2020-....] (Grenoble INP [2020-....]), Université Grenoble Alpes [2020-....] (UGA [2020-....])-Université Grenoble Alpes [2020-....] (UGA [2020-....])-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2020-....] (Grenoble INP [2020-....]), Université Grenoble Alpes [2020-....] (UGA [2020-....])-Université Grenoble Alpes [2020-....] (UGA [2020-....])-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Materials science
Photoemission spectroscopy Scanning tunneling spectroscopy Physics::Optics FOS: Physical sciences Angle-resolved photoemission spectroscopy 02 engineering and technology 01 natural sciences law.invention Superconductivity (cond-mat.supr-con) symbols.namesake law Condensed Matter::Superconductivity 0103 physical sciences Mesoscale and Nanoscale Physics (cond-mat.mes-hall) Proximity effect (superconductivity) Physics::Atomic and Molecular Clusters General Materials Science [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] Physics::Chemical Physics 010306 general physics ComputingMilieux_MISCELLANEOUS Superconductivity Condensed matter physics Condensed Matter - Mesoscale and Nanoscale Physics Graphene Mechanical Engineering Condensed Matter - Superconductivity General Chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics Mechanics of Materials symbols [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] Scanning tunneling microscope 0210 nano-technology Raman spectroscopy |
Zdroj: | 2D Materials 2D Materials, IOP Publishing, 2020, 8 (1), pp.015002. ⟨10.1088/2053-1583/abb71f⟩ 2D Materials, 2020, 8 (1), pp.015002. ⟨10.1088/2053-1583/abb71f⟩ 2D Materials, IOP Publishing, 2021, 8 (1), pp.015002. ⟨10.1088/2053-1583/abb71f⟩ |
ISSN: | 2053-1583 |
DOI: | 10.1088/2053-1583/abb71f⟩ |
Popis: | Graphene holds promises for exploring exotic superconductivity with Dirac-like fermions. Making graphene a superconductor at large scales is however a long-lasting challenge. A possible solution relies on epitaxially-grown graphene, using a superconducting substrate. Such substrates are scarce, and usually destroy the Dirac character of the electronic band structure. Using electron diffraction (reflection high-energy, and low-energy), scanning tunneling microscopy and spectroscopy, atomic force microscopy, angle-resolved photoemission spectroscopy, Raman spectroscopy, and density functional theory calculations, we introduce a strategy to induce superconductivity in epitaxial graphene $via$ a remote proximity effect, from the rhenium substrate through an intercalated gold layer. Weak graphene-Au interaction, contrasting with the strong undesired graphene-Re interaction, is demonstrated by a reduced graphene corrugation, an increased distance between graphene and the underlying metal, a linear electronic dispersion and a characteristic vibrational signature, both latter features revealing also a slight $p$ doping of graphene. We also reveal that the main shortcoming of the intercalation approach to proximity superconductivity is the creation of a high density of point defects in graphene (10$^{14}$~cm$^{-2}$). Finally, we demonstrate remote proximity superconductivity in graphene/Au/Re(0001), at low temperature. Comment: 13 pages, 6 figures, to appear in 2D Materials |
Databáze: | OpenAIRE |
Externí odkaz: |