Competition between Crystallization and Coalescence during the Film Formation of Poly(Chloroprene) Latex and Effects on Mechanical Properties
Autor: | Joseph L. Keddie, Ignacio Martín-Fabiani, J. M. Adams, Emilie Velasquez, Eman Alsaffar, Paul Ross-Gardner, Philip G. Richardson, Patrick Shaw, Peter Shaw |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
chemistry.chemical_classification
Materials science Chloroprene General Chemical Engineering Recrystallization (metallurgy) 02 engineering and technology General Chemistry Polymer 021001 nanoscience & nanotechnology Elastomer Industrial and Manufacturing Engineering law.invention chemistry.chemical_compound 020401 chemical engineering chemistry Natural rubber law visual_art Ultimate tensile strength visual_art.visual_art_medium 0204 chemical engineering Composite material Crystallization 0210 nano-technology Elastic modulus |
Popis: | Poly(chloroprene) is a synthetic crystallizable polymer used in several applications, including rubber gloves. The film formation of poly(chloroprene) latex offers opportunities to define structures at length scales between the molecular and macroscopic, thereby adjusting the elastomer’s mechanical properties. However, the connections between processing and the resultant film properties are not fully understood. Here, we investigate the competition between the coalescence of latex particles to build cohesive strength and their crystallization to raise the elastic modulus. We demonstrate that when coalescence precedes crystallization, the elastomer has greater extensibility and a higher tensile strength compared to when crystallization occurs during coalescence. The mechanical properties of poly(chloroprene) were tuned by blending two colloids with differing gel contents and crystallizabilities. Heating above poly(chloroprene)’s melting temperature allows increased particle interdiffusion and builds cohesion, prior to recrystallization. We provide evidence from in situ wide-angle X-ray scattering for the strain-induced crystallization of as-cast films from particle blends. |
Databáze: | OpenAIRE |
Externí odkaz: |