Möbius function of semigroup posets through Hilbert series
Autor: | Jorge Luis Ramírez Alfonsín, Jonathan Chappelon, Luis Pedro Montejano, Ignacio García-Marco |
---|---|
Přispěvatelé: | Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Hilbert series
0102 computer and information sciences Characterization (mathematics) Möbius function 01 natural sciences [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] Theoretical Computer Science Combinatorics symbols.namesake Locally finite poset [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] Discrete Mathematics and Combinatorics Mathematics - Combinatorics 0101 mathematics Mathematics Hilbert–Poincaré series 2010MSC : 20M15 05A99 06A07 11A25 20M05 20M25 Mathematics::Combinatorics Mathematics - Number Theory Semigroup Mathematics::Operator Algebras locally finite poset 010102 general mathematics [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] Graded poset Computational Theory and Mathematics 010201 computation theory & mathematics denumerant semigroup symbols Partially ordered set Mathematics - Group Theory |
Zdroj: | Journal of Combinatorial Theory, Series A Journal of Combinatorial Theory, Series A, Elsevier, 2015, 136, pp.238-251. ⟨10.1016/j.jcta.2015.07.006⟩ |
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1016/j.jcta.2015.07.006⟩ |
Popis: | In this paper, we investigate the M{\"o}bius function $\mu\_{\mathcal{S}}$ associated to a (locally finite) poset arising from a semigroup $\mathcal{S}$ of $\mathbb{Z}^m$. We introduce and develop a new approach to study $\mu\_{\mathcal{S}}$ by using the Hilbert series of $\mathcal{S}$. The latter enables us to provide formulas for $\mu\_{\mathcal{S}}$ when $\mathcal{S}$ belongs to certain families of semigroups. Finally, a characterization for a locally finite poset to be isomorphic to a semigroup poset is given. Comment: 11 pages |
Databáze: | OpenAIRE |
Externí odkaz: |