Regular entailment relations
Autor: | Stefan Neuwirth, Thierry Coquand, Henri Lombardi |
---|---|
Přispěvatelé: | Division of Computing Science, Chalmers University of Technology [Göteborg]-University of Gothenburg (GU), Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Philosophisches Archiv der Universität Konstanz, Gerhard Heinzmann, Gereon Wolters, Shahid Rahman, Nicolas Clerbout, ANR-15-IDEX-0003,BFC,ISITE ' BFC(2015), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), ANR: ISITE-BFC,ANR-15-IDEX-0003 |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
system of ideals
Structure (category theory) regular entailment relation 01 natural sciences Logical consequence Constructive law.invention [MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] law Simple (abstract algebra) 0103 physical sciences Calculus FOS: Mathematics Lorenzen-Clifford-Dieudonné theorem 0101 mathematics Relation (history of concept) equivariant system of ideals Mathematics morphism from a preordered group to a lattice-preordered group Preordered group MSC 2010: Primary 06F20 Secondary 06F05 13A15 13B22 010102 general mathematics Mathematics - Logic MSC 2020: Primary 06F20 CLARITY Equivariant map 010307 mathematical physics unbounded entailment relation Logic (math.LO) |
Zdroj: | Paul Lorenzen--Mathematician and Logician Paul Lorenzen: Mathematician and Logician Gerhard Heinzmann; Gereon Wolters. Paul Lorenzen--Mathematician and Logician, Springer, pp.103-114, 2021, Logic, Epistemology, and the Unity of Science, 978-3-030-65823-6. ⟨10.1007/978-3-030-65824-3_7⟩ Paul Lorenzen--Mathematician and Logician ISBN: 9783030658236 Paul Lorenzen: Mathematician and Logician, Philosophisches Archiv der Universität Konstanz, Mar 2018, Konstanz, Germany |
Popis: | Inspired by the work of Lorenzen on the theory of preordered groups in the forties and fifties, we define regular entailment relations and show a crucial theorem for this structure. We also describe equivariant systems of ideals à la Lorenzen and show that the remarkable regularisation process he invented yields a regular entailment relation. By providing constructive objects and arguments, we pursue Lorenzen’s aim of “bringing to light the basic, pure concepts in their simple and transparent clarity”. |
Databáze: | OpenAIRE |
Externí odkaz: |