BIFURCAÇÃO DE SOLUÇÕES PERIÓDICAS DE UM OSCILADOR NÃO LINEAR AMORTECIDO E FORÇADO
Autor: | Mara Sueli Simao Moraes |
---|---|
Přispěvatelé: | Plácido Zoega Táboas, Luiz Antonio Vieira de Carvalho, Sergio Rodrigues |
Rok vydání: | 2020 |
Zdroj: | Biblioteca Digital de Teses e Dissertações da USP Universidade de São Paulo (USP) instacron:USP |
DOI: | 10.11606/d.55.2020.tde-19022020-144649 |
Popis: | Não disponível Suppose the equation x + g(x) = -λ1x + λ2f where f is a scalar function which is 2π-periodic, λ1, λ2 are real parameters, xg(x) > 0 for x ≠ 0. The initial problem is to Characterize the existence and the number of 2π-periodic solutions of (1) which lie in a neighborhood of a 2π-periodic orbit of the degenerated equation x + g(x) = 0 (2) whose orbit in the (x, x) - space encircles the origin. The Liapunov-Schmidt reduction method is applied to obtain the bifurcation equations. The results are then obtained by successive use of the Implict Function theorenm,. We also characterize the existence and the number of 4π-periodic solutions of (1) which lie in a neighborhood of a 2π-periodic orbit of (2). |
Databáze: | OpenAIRE |
Externí odkaz: |