Rank 3 rigid representations of projective fundamental groups

Autor: Carlos Simpson, Adrian Langer
Přispěvatelé: Institute of Mathematics, Polish Academy of Sciences, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), ANR-13-PDOC-0015,TOFIGROU,Torseurs, fibrés vectoriels et schéma en groupes fondamental(2013), ANR-16-CE40-0011,Hodgefun,Groupes fondamentaux, Théorie de Hodge et Motifs(2016)
Rok vydání: 2018
Předmět:
Zdroj: Compositio Mathematica
Compositio Mathematica, Foundation Compositio Mathematica, 2018, 154 (7), pp.1534-1570. ⟨10.1112/S0010437X18007182⟩
ISSN: 1570-5846
0010-437X
DOI: 10.1112/s0010437x18007182
Popis: Let X be a smooth complex projective variety with basepoint x. We prove that every rigid integral irreducible representation $\pi_1(X,x)\to SL (3,{\mathbb C})$ is of geometric origin, i.e., it comes from some family of smooth projective varieties. This partially generalizes an earlier result by K. Corlette and the second author in the rank 2 case and answers one of their questions.
Comment: v3, 49 pages; final version, to appear in Compositio Math
Databáze: OpenAIRE