Identities for the Hurwitz zeta function, Gamma function, and L-functions

Autor: Michael O. Rubinstein
Rok vydání: 2013
Předmět:
Zdroj: The Ramanujan Journal. 32:421-464
ISSN: 1572-9303
1382-4090
DOI: 10.1007/s11139-013-9468-0
Popis: We derive several identities for the Hurwitz and Riemann zeta functions, the Gamma function, and Dirichlet L-functions. They involve a sequence of polynomials α k (s) whose study was initiated in Rubinstein (Ramanujan J. 27(1): 29–42, 2012). The expansions given here are practical and can be used for the high precision evaluation of these functions, and for deriving formulas for special values. We also present a summation formula and use it to generalize a formula of Hasse.
Databáze: OpenAIRE