State and unknown input estimation for nonlinear singular systems : application to the reduced model of the activated sludge process

Autor: B. Boulkroune, Michel Zasadzinski, Mohamed Darouach, S. Gille
Přispěvatelé: Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Henri Poincaré - Nancy 1 (UHP), Laboratoire des Technologies Industrielles (LTI), Centre de Recherche Public Henri-Tudor [Luxembourg] (CRP Henri-Tudor), Zasadzinski, Michel
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: 16th Mediterranean Conference on Control and Automation, MED'08
16th Mediterranean Conference on Control and Automation, MED'08, Jun 2008, Ajaccio, France. pp.CDROM
Popis: International audience; An estimation of the state and the unknown inputs of the reduced nonlinear model of an activated sludge process using the Extended Kalman Filter (EKF) is proposed. First, we present the reduced nonlinear model. This model contained five state variables and four unknown inputs. For satisfying the rank condition for the construction of an EKF, one unknown input has been approximated and the daily mean value of another unknown input has been used. Then, to estimate conjointly the state and the unknown inputs, the reduced nonlinear system is transformed to a nonlinear singular system. High performances of the proposed observer will be shown through the simulation results.
Databáze: OpenAIRE