Real-Time Path Planning Based on Harmonic Functions under a Proper Generalized Decomposition-Based Framework

Autor: Marta C. Mora, Nicolás Montés, Francisco Chinesta, Lucia Hilario, Nuria Rosillo, Enrique Nadal, Antonio Falcó
Přispěvatelé: Universidad Cardenal Herrera-CEU (CEU-UCH), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Universitat Jaume I, Department of Electronic Engineering [Universitat Politecnica de Valencia], Universitat Politècnica de València (UPV), UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas, Producción Científica UCH 2021
Rok vydání: 2021
Předmět:
0209 industrial biotechnology
Mathematical optimization
Harmonic functions
Computer science
Robótica
TP1-1185
02 engineering and technology
Sciences de l'ingénieur
Poisson equation
Biochemistry
Article
potential fields
Analytical Chemistry
Decomposition (Mathematics)
Computer Science::Robotics
[SPI]Engineering Sciences [physics]
020901 industrial engineering & automation
Autómatas matemáticos
Teoria de

Atomic and Molecular Physics
0502 economics and business
Machine theory
Motion planning
Electrical and Electronic Engineering
Instrumentation
path planning
Path planning
Descomposición (Matemáticas)
050210 logistics & transportation
Social robot
Chemical technology
05 social sciences
Ecuaciones en derivadas parciales
Mobile robot
Potential fields
Differential equations
Partial

Atomic and Molecular Physics
and Optics

Proper Generalized Decomposition
Variable (computer science)
Harmonic function
Funciones armónicas
Robotics
Benchmark (computing)
Robot
Poisson's equation
and Optics
harmonic functions
Zdroj: Repositori Universitat Jaume I
Universitat Jaume I
Sensors (Basel, Switzerland)
Sensors
Sensors, MDPI, 2021, 21 (12), pp.3943. ⟨10.3390/s21123943⟩
Volume 21
Issue 12
Sensors, Vol 21, Iss 3943, p 3943 (2021)
CEU Repositorio Institucional
Fundación Universitaria San Pablo CEU (FUSPCEU)
ISSN: 1424-8220
Popis: Este artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/1424-8220/21/12/3943 Este artículo de investigación pertenece al número especial "Autonomous Navigation in Robotics: A New Challenge towards Social Robots". This paper presents a real-time global path planning method for mobile robots using harmonic functions, such as the Poisson equation, based on the Proper Generalized Decomposition (PGD) of these functions. The main property of the proposed technique is that the computational cost is negligible in real-time, even if the robot is disturbed or the goal is changed. The main idea of the method is the off-line generation, for a given environment, of the whole set of paths from any start and goal configurations of a mobile robot, namely the computational vademecum, derived from a harmonic potential field in order to use it on-line for decision-making purposes. Up until now, the resolution of the Laplace or Poisson equations has been based on traditional numerical techniques unfeasible for real-time calculation. This drawback has prevented the extensive use of harmonic functions in autonomous navigation, despite their powerful properties. The numerical technique that reverses this situation is the Proper Generalized Decomposition. To demonstrate and validate the properties of the PGD-vademecum in a potential-guided path planning framework, both real and simulated implementations have been developed. Simulated scenarios, such as an L-Shaped corridor and a benchmark bug trap, are used, and a real navigation of a LEGO®MINDSTORMS robot running in static environments with variable start and goal configurations is shown. This device has been selected due to its computational and memory-restricted capabilities, and it is a good example of how its properties could help the development of social robots.
Databáze: OpenAIRE