Acetic Acid and Ammonium Persulfate Pre-Treated Copper Foil for the Improvement of Graphene Quality, Sensitivity and Specificity of Hall Effect Label-Free DNA Hybridization Detection
Autor: | Naiyuan Cui, Fei Wang, Hanyuan Ding |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Materials science
hall effect measurement graphene-based biosensors DNA hybridization Inorganic chemistry 02 engineering and technology 010402 general chemistry lcsh:Technology 01 natural sciences Article Corrosion law.invention chemistry.chemical_compound Acetic acid ammonium persulfate pre-treated copper foil law Hall effect General Materials Science lcsh:Microscopy lcsh:QC120-168.85 chemistry.chemical_classification lcsh:QH201-278.5 lcsh:T Graphene Biomolecule Substrate (chemistry) 021001 nanoscience & nanotechnology 0104 chemical sciences chemistry lcsh:TA1-2040 lcsh:Descriptive and experimental mechanics Ammonium persulfate lcsh:Electrical engineering. Electronics. Nuclear engineering lcsh:Engineering (General). Civil engineering (General) 0210 nano-technology acetic acid pre-treated copper foil lcsh:TK1-9971 Biosensor |
Zdroj: | Materials Volume 13 Issue 7 Materials, Vol 13, Iss 1784, p 1784 (2020) |
ISSN: | 1996-1944 |
DOI: | 10.3390/ma13071784 |
Popis: | The capability of graphene-based biosensors used to detect biomolecules, such as DNA and cancer marker, is enormously affected by the quality of graphene. In this work, high quality and cleanness graphene were obtained by CVD based on acetic acid (AA) and ammonium persulfate (AP) pretreated copper foil substrate. Hall effect devices were made by three kinds of graphene which were fabricated by CVD using no-treated copper foil, AA pre-treated copper foil and AP pre-treated copper foil. Hall effect devices made of AA pre-treated copper foil CVD graphene and AP pre-treated copper foil CVD graphene can both enhance the sensitivity of graphene-based biosensors for DNA recognition, but the AA pre-treated copper foil CVD graphene improves more (&asymp 4 times). This may be related to the secondary oxidation of AP pre-treated copper foil in the air due to the strong corrosion of ammonium persulfate, which leads to the quality decrease of graphene comparing to acetic acid. Our research provides an efficient method to improve the sensitivity of graphene-based biosensors for DNA recognition and investigates an effect of copper foil oxidation on the growth graphene. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |