A Weissman-type estimator of the conditional marginal expected shortfall

Autor: Armelle Guillou, Yuri Goegebeur, Nguyen Khanh Le Ho, Jing Qin
Přispěvatelé: Department of Mathematics and Computer Science [Odense] (IMADA), University of Southern Denmark (SDU), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE40-0013,ExtremReg,Régression extrême avec applications à l'économétrie, l'environnement et à la finance(2019), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), ANR-19-CE40-0013,ExtremReg,Extremal Regression with Applications to Econometrics, Environment and Finance(2019)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Econometrics and Statistics
Econometrics and Statistics, Elsevier, In press, ⟨10.1016/j.ecosta.2021.09.006⟩
ISSN: 2452-3062
DOI: 10.1016/j.ecosta.2021.09.006⟩
Popis: The marginal expected shortfall is an important risk measure in finance, which has been extended recently to the case where the random variables of main interest (Y^{(1)}, Y^{(2)}) are observed together with a covariate X\in \mathbb R^d. This leads to the concept of conditional marginal expected shortfall. It is defined as \theta_{p}(x_0)=\mathbb E[Y^{(1)}| Y^{(2)}\geq Q_{Y^{(2)}}(1-p|x_0); x_0], where p is small and Q_{Y^{(2)}}(\cdot|x_0) denotes the conditional quantile function of Y^{(2)}, given X=x_0. In this paper, we propose an estimator for \theta_p(x_0) allowing extrapolation outside the Y^{(2)}-data range, i.e., valid for p
Databáze: OpenAIRE