Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity

Autor: Mukund Bahadur Koirala, Santosh Aryal, Arunkumar Pitchaimani, Tuyen Duong Thanh Nguyen, Yuntao Zhang
Rok vydání: 2017
Předmět:
Zdroj: Toxicology in Vitro. 43:29-39
ISSN: 0887-2333
DOI: 10.1016/j.tiv.2017.05.020
Popis: In vitro cell-nanoparticle (NP) studies involve exposure of NPs onto the monolayer cells growing at the bottom of a culture plate, and assumed that the NPs evenly distributed for a dose-responsive effect. However, only a few proportion of the administered dose reaches the cells depending on their size, shape, surface, and density. Often the amount incubated (administered dose) is misled as a responsive dose. Herein, we proposed a cell adhesion-migration (CAM) strategy, where cells incubated with the NP coated cell culture substrate to maximize the cell-NP interaction and investigated the physiological properties of the cells. In the present study, cell adhesion and migration pattern of human breast cancer cell (MCF-7) and mouse melanoma cell (B16-F10) on cell culture substrate decorated with toxic (cetyltrimethylammonium bromide, CTAB) and biocompatible (poly (sodium 4-styrenesulphonate), PSS) gold nanoparticles (AuNPs) of different sizes (5 and 40nm) were investigated and evaluated for cellular uptake efficiency, proliferation, and toxicity. Results showed enhanced cell adhesion, migration, and nanoparticle uptake only on biocompatible PSS coated AuNP, irrespective of its size. Whereas, cytotoxic NP shows retard proliferation with reduced cellular uptake efficiency. Considering the importance of cell adhesion and migration on cellular uptake and cytotoxicity assessment of nanoparticle, CAM strategy would hold great promises in cell-NP interaction studies.
Databáze: OpenAIRE