Rank 3 Quadratic Generators of Veronese Embeddings
Autor: | Hyunsuk Moon, Kangjin Han, Euisung Park, Wanseok Lee |
---|---|
Rok vydání: | 2020 |
Předmět: |
Algebra and Number Theory
Property (philosophy) Mathematics::Commutative Algebra 010102 general mathematics 13D02 14A25 14N05 14M12 14M17 01 natural sciences Combinatorics Mathematics - Algebraic Geometry Quadratic equation Mathematics::Algebraic Geometry 0103 physical sciences FOS: Mathematics Rank (graph theory) 010307 mathematical physics 0101 mathematics Algebraic Geometry (math.AG) Mathematics |
DOI: | 10.48550/arxiv.2001.06687 |
Popis: | Let $L$ be a very ample line bundle on a projective scheme $X$ defined over an algebraically closed field $\Bbbk$ with ${\rm char}~\Bbbk \neq 2$. We say that $(X,L)$ satisfies property $\mathsf{QR}(k)$ if the homogeneous ideal of the linearly normal embedding $X \subset \mathbb{P}H^0 (X,L)$ can be generated by quadrics of rank $\leq k$. Many classical varieties such as Segre-Veronese embeddings, rational normal scrolls and curves of high degree satisfy property $\mathsf{QR}(4)$. In this paper, we first prove that if ${\rm char}~\Bbbk \neq 3$ then $(\mathbb{P}^n , \mathcal{O}_{\mathbb{P}^n} (d))$ satisfies property $\mathsf{QR}(3)$ for all $n \geq 1$ and $d \geq 2$. We also investigate an asymptotic behavior of property $\mathsf{QR}(3)$ for any projective scheme. Namely, we prove that $(i)$ if $X \subset \mathbb{P} H^0 (X,L)$ is $m$-regular then $(X,L^d )$ satisfies property $\mathsf{QR}(3)$ for all $d \geq m$ and $(ii)$ if $A$ is an ample line bundle on $X$ then $(X,A^d )$ satisfies property $\mathsf{QR}(3)$ for all sufficiently large even number $d$. These results provide an affirmative evidence for the expectation that property $\mathsf{QR}(3)$ holds for all sufficiently ample line bundles on $X$, as in the cases of Green-Lazarsfeld's condition $\mathrm{N}_p$ and Eisenbud-Koh-Stillman's determininantal presentation in [EKS88]. Finally, when ${\rm char}~\Bbbk = 3$ we prove that $(\mathbb{P}^n , \mathcal{O}_{\mathbb{P}^n} (2))$ fails to satisfy property $\mathsf{QR}(3)$ for all $n \geq 3$. Comment: 24 pages |
Databáze: | OpenAIRE |
Externí odkaz: |