A moonshine path for 5A and associated lattices of ranks 8 and 16
Autor: | Robert L. Griess, Ching Hung Lam |
---|---|
Rok vydání: | 2011 |
Předmět: |
Path (topology)
Algebra and Number Theory Mathematics - Number Theory Diagram (category theory) 010102 general mathematics Context (language use) 010103 numerical & computational mathematics Group Theory (math.GR) 01 natural sciences Algebra Leech lattice Extended E8-diagram Niemeier lattices Monster simple group FOS: Mathematics Moonshine Number Theory (math.NT) 0101 mathematics E8 Mathematics - Group Theory Mathematics Monster |
Zdroj: | Journal of Algebra. 331(1):338-361 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2010.11.013 |
Popis: | We continue the program, begun in Griess and Lam (in press) [18] , to make a moonshine path between a node of the extended E 8 -diagram and the Monster. Our goal is to provide a context for observations of McKay, Glauberman and Norton by realizing their theories in a more concrete form. In this article, we treat the 5A-node. Most work in this article is a study of certain lattices of ranks 8, 16 and 24 whose determinants are powers of 5. |
Databáze: | OpenAIRE |
Externí odkaz: |