Karhunen-Loeve Dönüşümüne Dayalı Yöntemleri Kullanarak Kayıplı Görüntü Sıkıştırma

Autor: Serkan KESER
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Volume: 9, Issue: 2 424-435
El-Cezeri
ISSN: 2148-3736
Popis: In this paper, we discuss image compression techniques based on the eigenvector matrices used the Karhunen-Loeve Transform (KLT) is obtained. Two novel methods are proposed for the grouping of eigenvectors via vector quantization in the KLT subspace. Various codebook sizes are tested for image compression purposes. The first grouping approach uses eigenvectors of autocorrelation matrices for geometrically clustering into fewer numbers of vectors. In this approach, the quantization is performed using principal component directions of the eigenvector matrices. The second approach has used the eigenvectors according to their usage frequencies. The qualities of reconstructed test images are compared with DCT based JPEG and Wavelet Transform based JPEG2000 compression methods using the PSNR metric. Experimental results show that the proposed methods, particularly the second method, give plausible and competitive results.
Bu yazıda, Karhunen-Loeve Dönüşümü (KLT) kullanılarak elde edilen özvektör matrislerine dayalı görüntü sıkıştırma teknikleri tartışılmaktadır. KLT alt uzayında vektör niceleme yoluyla özvektörlerin gruplandırılması için iki yöntem önerilmiştir. Görüntü sıkıştırma amaçları için çeşitli kod kitabı boyutları test edilir. İlk gruplama yaklaşımı, geometrik olarak daha az sayıda vektöre kümeleme için otokorelasyon matrislerinin özvektörlerini kullanır. Bu yaklaşımda nicemleme, özvektör matrislerinin temel bileşen yönleri kullanılarak gerçekleştirilir. İkinci yaklaşım, özvektörleri kullanım frekanslarına göre kullanmıştır. Yeniden oluşturulmuş test görüntülerinin nitelikleri, PSNR metriği kullanılarak DCT tabanlı JPEG ve Wavelet Dönüşümü tabanlı JPEG2000 sıkıştırma yöntemleriyle karşılaştırılır. Deneysel sonuçlar, önerilen yöntemlerin, özellikle ikinci yöntemin makul ve rekabetçi sonuçlar verdiğini göstermektedir.
Databáze: OpenAIRE