Machine learning to detect bycatch risk : novel application to echosounder buoys data in tuna purse seine fisheries
Autor: | Laurent Dagorn, Fabien Forget, Yannick Baidai, Laura Mannocci, Mariana Travassos Tolotti, Manuela Capello |
---|---|
Přispěvatelé: | MARine Biodiversity Exploitation and Conservation (UMR MARBEC), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut de Recherche pour le Développement (IRD) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
Marine conservation [SDE.MCG]Environmental Sciences/Global Changes Big data Machine learning computer.software_genre Incidental catch 010603 evolutionary biology 01 natural sciences Echosounder buoys Echo sounding 14. Life underwater Atlantic Ocean Indian Ocean Ecology Evolution Behavior and Systematics Nature and Landscape Conservation business.industry 010604 marine biology & hydrobiology Drifting fish aggregating devices Random forests Fishery Bycatch Indian ocean Overexploitation Geography Tropical tuna purse seine fisheries Artificial intelligence [SDE.BE]Environmental Sciences/Biodiversity and Ecology business Tuna computer |
Zdroj: | Biological Conservation Biological Conservation, 2021, 255, pp.109004. ⟨10.1016/j.biocon.2021.109004⟩ Biological Conservation, Elsevier, 2021, 255, pp.109004. ⟨10.1016/j.biocon.2021.109004⟩ Biological Conservation (0006-3207) (Elsevier BV), 2021-03, Vol. 255, P. 109004 (6p.) |
ISSN: | 0006-3207 |
DOI: | 10.1016/j.biocon.2021.109004⟩ |
Popis: | WOS:000630817600001; International audience; The advent of big data and machine learning offers great promise for addressing conservation and management questions in the oceans. Yet, few applications of machine learning exist to mitigate the overexploitation of marine resources. Tropical tuna purse seine fisheries (TTPSF) are distributed worldwide and account for two thirds of the global tuna catch. In these fisheries, the use of Drifting Fish Aggregating Devices (DFADs)? n-made floating objects massively deployed by fishers to increase their tuna catches?results in the incidental catch of non-target species, termed bycatch. We explored the possibility of applying machine learning on echosounder buoys attached to DFADs, representing an unprecedented source of big data, for identifying high bycatch risk at DFADs. We trained random forests algorithms to differentiate between high and low bycatch occurrence based on matched echosounder and onboard observer data for the same DFADs (representing sample sizes of 838 and 2144 in the Atlantic and the Indian Ocean, respectively). Algorithms showed a better performance in the Atlantic Ocean (accuracy of 0.66 versus 0.58 in the Indian Ocean) and were best at detecting the ?high bycatch? occurrence class. These results unravel the potential of machine learning applied to fishers? buoys data for bycatch reduction and improved selectivity in one of the largest fisheries worldwide. |
Databáze: | OpenAIRE |
Externí odkaz: |