LIMSI_UPV at SemEval-2020 Task 9: Recurrent Convolutional Neural Network for Code-mixed Sentiment Analysis

Autor: Sahar Ghannay, Paolo Rosso, Anne Vilnat, Somnath Banerjee, Sophie Rosset
Přispěvatelé: Information, Langue Ecrite et Signée (ILES), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universitat Politècnica de València (UPV), Daly, Bénédicte
Jazyk: angličtina
Rok vydání: 2021
Předmět:
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
FOS: Computer and information sciences
Computer Science - Artificial Intelligence
Computer science
02 engineering and technology
computer.software_genre
Semantics
Convolutional neural network
Task (project management)
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
[INFO.EIAH] Computer Science [cs]/Technology for Human Learning
0202 electrical engineering
electronic engineering
information engineering

Computer Science - Computation and Language
business.industry
Sentiment analysis
SemEval
Recurrent neural network
Artificial Intelligence (cs.AI)
020201 artificial intelligence & image processing
[INFO.EIAH]Computer Science [cs]/Technology for Human Learning
Artificial intelligence
business
F1 score
computer
Computation and Language (cs.CL)
Natural language processing
Test data
Zdroj: HAL
SemEval@COLING
Popis: This paper describes the participation of LIMSI UPV team in SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text. The proposed approach competed in SentiMix Hindi-English subtask, that addresses the problem of predicting the sentiment of a given Hindi-English code-mixed tweet. We propose Recurrent Convolutional Neural Network that combines both the recurrent neural network and the convolutional network to better capture the semantics of the text, for code-mixed sentiment analysis. The proposed system obtained 0.69 (best run) in terms of F1 score on the given test data and achieved the 9th place (Codalab username: somban) in the SentiMix Hindi-English subtask.
Comment: To be published in the Proceedings of the 14th International Workshop on Semantic Evaluation (SemEval-2020), Barcelona, Spain, Sep. Association for Computational Linguistics
Databáze: OpenAIRE