From modular invariants to graphs: the modular splitting method

Autor: Gil Schieber, Esteban Isasi
Přispěvatelé: Centre de Physique Théorique - UMR 6207 (CPT), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Departamento de Física, Universidad Simon Bolivar (USB), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centro Brasileiro de Pesquisas Físicas (CBPF), Ministério da Ciência e Tecnologia, Laboratoire de Physique Théorique et des Particules (LPTP), Université Mohamed I, Oujda, Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Université Mohammed Premier [Oujda]
Jazyk: angličtina
Rok vydání: 2007
Předmět:
High Energy Physics - Theory
Statistics and Probability
Pure mathematics
General method
modular invariance
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences
General Physics and Astronomy
conformal field theory
01 natural sciences
Hopf algebra
Mathematics - Quantum Algebra
0103 physical sciences
FOS: Mathematics
higher ADE systems
Quantum Algebra (math.QA)
Boundary value problem
Invariant (mathematics)
010306 general physics
Quantum
Mathematical Physics
Mathematics
fusion algebra
010308 nuclear & particles physics
Conformal field theory
business.industry
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Modular design
Graph
quantum groupoids
High Energy Physics - Theory (hep-th)
Modeling and Simulation
Homogeneous space
[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
business
Zdroj: Journal of Physics A: Mathematical and Theoretical
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2007, p. 6513-6537, http://stacks.iop.org/1751-8121/40/6513
Journal of Physics A: Mathematical and Theoretical, 2007, 40, p. 6513-6537, http://stacks.iop.org/1751-8121/40/6513
ISSN: 1751-8113
1751-8121
Popis: We start with a given modular invariant M of a two dimensional su(n)_k conformal field theory (CFT) and present a general method for solving the Ocneanu modular splitting equation and then determine, in a step-by-step explicit construction, 1) the generalized partition functions corresponding to the introduction of boundary conditions and defect lines; 2) the quantum symmetries of the higher ADE graph G associated to the initial modular invariant M. Notice that one does not suppose here that the graph G is already known, since it appears as a by-product of the calculations. We analyze several su(3)_k exceptional cases at levels 5 and 9.
Comment: 28 pages, 7 figures. Version 2: updated references. Typos corrected. su(2) example has been removed to shorten the paper. Dual annular matrices for the rejected exceptional su(3) diagram are determined
Databáze: OpenAIRE