Algebraic Aspects of Matrix Orthogonality for Vector Polynomials
Autor: | Jeannette Van Iseghem, V. N. Sorokin |
---|---|
Rok vydání: | 1997 |
Předmět: |
Mathematics(all)
Numerical Analysis Gegenbauer polynomials Applied Mathematics General Mathematics Discrete orthogonal polynomials Mathematics::Classical Analysis and ODEs Mehler–Heine formula Classical orthogonal polynomials Algebra symbols.namesake Difference polynomials Wilson polynomials Orthogonal polynomials symbols Jacobi polynomials Analysis Mathematics |
Zdroj: | Journal of Approximation Theory. 90:97-116 |
ISSN: | 0021-9045 |
DOI: | 10.1006/jath.1996.3064 |
Popis: | An algebraic theory of orthogonality for vector polynomials with respect to a matrix of linear forms is presented including recurrence relations, extension of the Shohat?Favard theorem, of the Christoffel?Darboux formula, and its converse. The connection with orthogonal matrix polynomials is described. |
Databáze: | OpenAIRE |
Externí odkaz: |