On the Existence of Polynomial Lyapunov Functions for Rationally Stable Vector Fields
Autor: | Christoffer Sloth, Rafal Wisniewski, Tobias Leth |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Lyapunov function
0209 industrial biotechnology Polynomial 02 engineering and technology Stability (probability) symbols.namesake 020901 industrial engineering & automation Exponential stability Stability theory 0202 electrical engineering electronic engineering information engineering symbols Applied mathematics 020201 artificial intelligence & image processing Vector field Numerical stability Mathematics Counterexample |
Zdroj: | Leth, T, Wisniewski, R & Sloth, C 2018, On the Existence of Polynomial Lyapunov Functions for Rationally Stable Vector Fields . in 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017 . vol. 2018-January, IEEE, pp. 4884-4889, 56th IEEE Conference on Decision and Control (CDC), Melbourne, Australia, 12/12/2017 . https://doi.org/10.1109/CDC.2017.8264381 CDC |
DOI: | 10.1109/CDC.2017.8264381 |
Popis: | This paper proves the existence of polynomial Lyapunov functions for rationally stable vector fields. For practical purposes the existence of polynomial Lyapunov functions plays a significant role since polynomial Lyapunov functions can be found algorithmically. The paper extents an existing result on exponentially stable vector fields to the case of rational stability. For asymptotically stable vector fields a known counter example is investigated to exhibit the mechanisms responsible for the inability to extend the result further. |
Databáze: | OpenAIRE |
Externí odkaz: |