Poroacoustic Traveling Waves under the Rubin–Rosenau–Gottlieb Theory of Generalized Continua
Autor: | Pedro M. Jordan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Statistics::Theory
lcsh:Hydraulic engineering Mathematics::Number Theory Geography Planning and Development Context (language use) Aquatic Science 01 natural sciences Biochemistry 010305 fluids & plasmas lcsh:Water supply for domestic and industrial purposes lcsh:TC1-978 0103 physical sciences Traveling wave Initial value problem Periodic boundary conditions Statistics::Methodology Piston (optics) 0101 mathematics Real line Water Science and Technology Mathematics lcsh:TD201-500 solitary waves and kinks poroacoustics Mathematical analysis 010101 applied mathematics Nonlinear system Rubin–Rosenau–Gottlieb theory Computer Science::Sound |
Zdroj: | Water Volume 12 Issue 3 Water, Vol 12, Iss 3, p 807 (2020) |
ISSN: | 2073-4441 |
DOI: | 10.3390/w12030807 |
Popis: | We investigate linear and nonlinear poroacoustic waveforms under the Rubin&ndash Rosenau&ndash Gottlieb (RRG) theory of generalized continua. Working in the context of the Cauchy problem, on both the real line and the case with periodic boundary conditions, exact and asymptotic expressions are obtained. Numerical simulations are also presented, von Neumann&ndash Richtmyer &ldquo artificial&rdquo viscosity is used to derive an exact kink-type solution to the poroacoustic piston problem, and possible experimental tests of our findings are noted. The presentation concludes with a discussion of possible follow-on investigations. |
Databáze: | OpenAIRE |
Externí odkaz: |