Combined Experimental and Theoretical Molecular Approach of the Catalytically Active Hydrotreating MoS2 Phases Promoted by 3d Transition Metals
Autor: | Rick Arancon, Mohamad Saab, Alexis Morvan, Audrey Bonduelle-Skrzypczak, Anne-Lise Taleb, Anne-Sophie Gay, Christèle Legens, Ovidiu Ersen, Keith Searles, Victor Mougel, Alexey Fedorov, Christophe Copéret, Pascal Raybaud |
---|---|
Přispěvatelé: | IFP Energies nouvelles (IFPEN), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Department of Chemistry and Applied Biosciences [ETH Zürich] (D-CHAB), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Materials science
02 engineering and technology [CHIM.CATA]Chemical Sciences/Catalysis 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences 0104 chemical sciences Surfaces Coatings and Films Electronic Optical and Magnetic Materials General Energy Transition metal Chemical engineering Physical and Theoretical Chemistry 0210 nano-technology Hydrodesulfurization |
Zdroj: | Journal of Physical Chemistry C Journal of Physical Chemistry C, American Chemical Society, 2019, 123 (40), pp.24659-24669. ⟨10.1021/acs.jpcc.9b08437⟩ |
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.9b08437⟩ |
Popis: | International audience; High-throughput synthesis combined with a surface organometallic (coordination) chemistry approach is used to prepare in a systematic way a series of 40 metal-promoted (Me)–MoS2 active phases supported on amorphous silica alumina with various Me/Mo ratios (0–0.5). The intrinsic catalytic activity in a model reaction, namely, toluene hydrogenation, evaluated also by a high-throughput method shows a well-marked Me/Mo optimal ratio corresponding to an improved catalytic activity with respect to the MoS2 reference for Me = Fe, Co, and Ni. In contrast, no impact is observed for Zn, while a negative impact on the activity is observed for Ti and Cu. To rationalize these results, the thermodynamic stabilities, local structures, and magnetic properties of the Me atoms at the edges of the MoS2 nanocrystallite are examined by the density functional theory (DFT) calculations. The calculated edge energy descriptor unambiguously categorizes the different types of MeMoS mixed phases. Optimal intermediate edge energies are found for CoMoS, NiMoS, and to a lesser extent for FeMoS, whereas too high or too low edge energies are found for Me = Ti, V, Cu, and Zn, which is consistent with the observed catalytic trends with the varying Me/Mo ratio. The location of Fe in close vicinity of the MoS2 phase is highlighted by scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy analysis which is in agreement with the DFT prediction of the stability of Fe at MoS2 edges. Finally, we propose to extend the edge energy descriptor to WS2-based catalysts and to other sulforeductive conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |