Caesalpinia Crista Linn. Induces Protection against DNA and Membrane Damage
Autor: | Ramesh B Narasingappa, Talakatta K Girish, Chandrashekhar G. Joshi, Ananda Danagoudar, R Sunil Kumar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Antioxidant DPPH medicine.medical_treatment Flavonoid Ethyl acetate DNA protection Pharmaceutical Science free radicals Antioxidants 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Drug Discovery medicine oxidative stress Gallic acid chemistry.chemical_classification ABTS Chromatography Caesalpinia crista food and beverages 030104 developmental biology chemistry Biochemistry Polyphenol membrane damage 030220 oncology & carcinogenesis Original Article Quercetin |
Zdroj: | Pharmacognosy Magazine |
ISSN: | 0976-4062 0973-1296 |
Popis: | Background: Caesalpinia crista is a medicinal herb used to cure various ailments in subtropical and tropical regions of Southeast Asia. Objective: The objective of this evaluation of C. crista against free radical induced DNA and erythrocyte damage. Materials and Methods: The profiles of polyphenol and flavonoid were quantified through reversed-phase high-performance liquid chromatography. Free radical induced DNA and membrane damage were performed using H2O2 as oxidative agent. Results: The total polyphenol content of C. crista leaf ethyl acetate extract (CcEA) was 94.5 ± 3.8 mg/gGAE, CcME (C. crista leaf methanol extract) was 52.7 ± 2.8 mg/gGAE, and CcWE (C. crista leaf Water extract) was 31.84 ± 1.8 mg/gGAE. Total flavonoid content of CcEA was 60.46 ± 2.3 mg/gQE, CcME was 46.26 ± 1.8 mg/gQE, and CcWE was 20.47 ± 1.1 mg/gQE. The extracts also exhibited good antioxidant activity as confirmed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), hydroxyl scavenging, reducing power, and total antioxidant assays. Among the three extracts, CcEA and CcME showed better protection against red blood cell (RBC) hemolysis and DNA damage as confirmed by electrophoretic study. Further, Scanning electron micrograph data showed that CcEA revealed the free radical induced structural alterations in RBC. Conclusion: These findings suggest that C. crista contains bioactive molecules and can inhibit oxidative stress and can be source of further study to use this in herbal medicine. SUMMARY ROS are generated under normal biological systems. These ROS generated can be scavenged by endogenous and exogenous cellular mechanisms. Environmental stress, radiation, smoke etc. elevates ROS dramatically. This leads to significant damage to cellular biomolecules like DNA and cell structures. Plants as a large reservoir of drugs for protecting DNA and cell structures from oxidative stress. Polyphenols present in the C. crista extracts acts through several mechanisms to quench free radicals. Extracts exhibited potent antioxidant properties and also protected DNA and cell membrane from oxidative damage. Hence this can be used in herbal medicine for treating oxidative stress mediated diseases. Abbreviations used: ABTS: 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); CcEA: C. crista leaf ethyl acetate extract; CcME: C. crista leaf methanol extract; CcWE: C. crista leaf Water extract; DPPH: 2,2-diphenyl-1-picrylhydrazyl; GAE: Gallic acid Equivalent; H2O2: Hydrogen Peroxide; QE: Quercetin Equivalent; RNS: Reactive Nitrogen Spevcies; ROS: Reactive Oxygen Species; SEM: Scanning Electron Microscope. |
Databáze: | OpenAIRE |
Externí odkaz: |