Symmetry as an Intrinsically Dynamic Feature
Autor: | Marco Elio Tabacchi, Bertrand Zavidovique, Vito Di Gesù |
---|---|
Přispěvatelé: | Di Gesu, V, Tabacchi, M, Zavidovique, B |
Rok vydání: | 2010 |
Předmět: |
Theoretical computer science
Physics and Astronomy (miscellaneous) business.industry lcsh:Mathematics General Mathematics Context (language use) lcsh:QA1-939 artificial vision Spatial relation Kernel (image processing) Chemistry (miscellaneous) Feature (computer vision) Salient Computer Science (miscellaneous) features feature Computer vision Artificial intelligence Symmetry (geometry) Image warping Geometric modeling business symmetry Mathematics |
Zdroj: | Symmetry Volume 2 Issue 2 Pages 554-581 Symmetry, Vol 2, Iss 2, Pp 554-581 (2010) |
ISSN: | 2073-8994 |
DOI: | 10.3390/sym2020554 |
Popis: | Symmetry is one of the most prominent spatial relations perceived by humans, and has a relevant role in attentive mechanisms regarding both visual and auditory systems. The aim of this paper is to establish symmetry, among the likes of motion, depth or range, as a dynamic feature in artificial vision. This is achieved in the first instance by assessing symmetry estimation by means of algorithms, putting emphasis on erosion and multi- resolution approaches, and confronting two ensuing problems: the isolation of objects from the context, and the pertinence (or lack thereof) of some salient points, such as the centre of mass. Next a geometric model is illustrated and detailed, and the problem of measuring symmetry in a world where symmetry is not perfect nor the only attention trigger is tackled. Two algorithmic lines, based on the so-called symmetry kernel and its evolution with pattern warping, and by correlation of blocks with varying sizes and positions, are proposed and investigated. An extended illustration of the power of symmetry as a feature, based on face expression recognition, concludes the paper. |
Databáze: | OpenAIRE |
Externí odkaz: |