Comparison of bootstrap resampling methods for 3-D PET imaging
Autor: | Irène Buvat, J.-B Aubin, Carole Lartizien |
---|---|
Přispěvatelé: | Images et Modèles, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC (UMR_8165)), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan [Villeurbanne] ( ICJ ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Centre National de la Recherche Scientifique ( CNRS ), Centre de Recherche et d'Application en Traitement de l'Image et du Signal ( CREATIS ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -École Supérieure Chimie Physique Électronique de Lyon-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Imagerie et Modélisation en Neurobiologie et Cancérologie ( IMNC ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) |
Rok vydání: | 2010 |
Předmět: |
Computer science
Monte Carlo method Probability density function Method of moments (statistics) Poisson distribution Sensitivity and Specificity 030218 nuclear medicine & medical imaging 03 medical and health sciences symbols.namesake 0302 clinical medicine Resampling Statistics Image Interpretation Computer-Assisted Humans Electrical and Electronic Engineering Bootstrapping (statistics) Parametric statistics [STAT.AP]Statistics [stat]/Applications [stat.AP] Radiological and Ultrasound Technology Noise measurement business.industry Estimation theory [ STAT.AP ] Statistics [stat]/Applications [stat.AP] Nonparametric statistics Statistical parameter Reproducibility of Results Pattern recognition Signal Processing Computer-Assisted Image Enhancement Computer Science Applications Sample size determination 030220 oncology & carcinogenesis Positron-Emission Tomography Sample Size symbols Analysis of variance Artificial intelligence business Software Algorithms |
Zdroj: | IEEE Transactions on Medical Imaging IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2010, 29 (7), pp.1442-1454 |
ISSN: | 1558-254X 0278-0062 |
Popis: | International audience; Two groups of bootstrap methods have been proposed to estimate the statistical properties of positron emission tomography (PET) images by generating multiple statistically equivalent data sets from few data samples. The first group generates resampled data based on a parametric approach assuming that data from which resampling is performed follows a Poisson distribution while the second group consists of nonparametric approaches. These methods either require a unique original sample or a series of statistically equivalent data that can be list-mode files or sinograms. Previous reports regarding these bootstrap approaches suggest different results. This work compares the accuracy of three of these bootstrap methods for 3-D PET imaging based on simulated data. Two methods are based on a unique file, namely a list-mode based nonparametric (LMNP) method and a sinogram based parametric (SP) method. The third method is a sinogram-based nonparametric (SNP) method. Another original method (extended LMNP) was also investigated, which is an extension of the LMNP methods based on deriving a resampled list-mode file by drawings events from multiple original list-mode files. Our comparison is based on the analysis of the statistical moments estimated on the repeated and resampled data. This includes the probability density function and the moments of order 1 and 2. Results show that the two methods based on multiple original data (SNP and extended LMNP) are the only methods that correctly estimate the statistical parameters. Performances of the LMNP and SP methods are variable. Simulated data used in this study were characterized by a high noise level. Differences among the tested strategies might be reduced with clinical data sets with lower noise. |
Databáze: | OpenAIRE |
Externí odkaz: |