Micro-pillar testing of amorphous silica
Autor: | Guillaume Kermouche, Etienne Barthel, Vincent Chomienne, Jérémie Teisseire, Samuel Queste, Rémi Lacroix |
---|---|
Přispěvatelé: | Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne-Centre National de la Recherche Scientifique (CNRS), Surface du Verre et Interfaces (SVI), Centre National de la Recherche Scientifique (CNRS), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
010302 applied physics
FEM Micro-pillars Materials science Constitutive equation 02 engineering and technology Substrate (electronics) Nanoindentation Strain hardening exponent Plasticity 021001 nanoscience & nanotechnology 01 natural sciences Finite element method Amorphous solid Amorphous materials 0103 physical sciences Pressure dependent elasticity [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] General Materials Science Composite material 0210 nano-technology Elastic modulus |
Zdroj: | International Journal of Applied Glass Science International Journal of Applied Glass Science, Wiley, 2012, 3 (1), pp.36-43. ⟨10.1111/j.2041-1294.2011.00075.x⟩ |
ISSN: | 2041-1286 2041-1294 |
DOI: | 10.1111/j.2041-1294.2011.00075.x⟩ |
Popis: | International audience; Amorphous silica exhibits a complex mechanical response. The elastic regime is highly non linear while plastic flow does not conserve volume, re- sulting in densification. As a result the quantification of a reliable constitutive equation is a difficult task. We have assessed the potential of micro-pillar compression testing for the investigation of the micromechanical properties of amorphous silica. We have calculated the response of amorphous silica mi- cropillars as predicted by Finite Element Analysis. The results were compared to preliminary micro-compression tests. In the calculations an advanced con- stitutive law including plastic response, densification and strain hardening was used. Special attention was paid to the evaluation of the impact of substrate compliance, pillar misalignment and friction conditions. We find that amor- phous silica is much more amenable than some metals to microcompression experiments due to a comparatively high ratio between yield stress and elastic modulus. The simulations are found to be very consistent with the experimen- tal results. However full agreement cannot be obtained without allowance for the non linear response of amorphous silica in the elastic regime. |
Databáze: | OpenAIRE |
Externí odkaz: |