A description for the compactification of the orbit space
Autor: | Dünya Karapinar, Ali Arslan Özkurt |
---|---|
Přispěvatelé: | Çukurova Üniversitesi |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Theoretical physics
Alexandroff extension General Mathematics Orbit space Mathematics::General Topology Gelfand compactification one-point compactification orbit space continuous and bounded functions ring Compactification (mathematics) Continuous and bounded functions ring Gelfand compactification One-point compactification Mathematics |
Zdroj: | Volume: 43, Issue: 4 2025-2031 Turkish Journal of Mathematics |
ISSN: | 1300-0098 1303-6149 |
Popis: | Let$\ X$ be a locally compact and noncompact$\ G-$space with a compact group $G$. In this paper, we give some useful description of a compactification of the orbit space $X/G$ when it is an orbit space of a $G-$compactification of $X$. As an application, we show that the closed bounded interval $[a,b]$ is homeomorphic to the space of maximal ideals with Stone topology of uniformly continuous even functions subring of $\ C^{\ast }(\mathbb{R})$. |
Databáze: | OpenAIRE |
Externí odkaz: |