Solid-state synthesis, magnetic and structural properties of interfacial B2-FeRh(001) layers in Rh/Fe(001) films
Autor: | V. G. Myagkov, D. A. Velikanov, Mikhail N. Volochaev, G. N. Bondarenko, Liudmila E. Bykova, V. S. Zhigalov, A. A. Matsynin, A. A. Ivanenko |
---|---|
Rok vydání: | 2020 |
Předmět: |
010302 applied physics
Multidisciplinary Materials science Annealing (metallurgy) lcsh:R lcsh:Medicine 02 engineering and technology 021001 nanoscience & nanotechnology Epitaxy 01 natural sciences Article Grain size Nanocrystalline material Crystallography Magnetization Ferromagnetism Magnetic properties and materials 0103 physical sciences Antiferromagnetism lcsh:Q Crystallite Magnetic materials lcsh:Science 0210 nano-technology |
Zdroj: | Scientific Reports, Vol 10, Iss 1, Pp 1-12 (2020) Scientific Reports |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-020-67837-2 |
Popis: | Here we first report results of the start of the solid-state reaction at the Rh/Fe(001) interface and the structural and magnetic phase transformations in 52Rh/48Fe(001), 45Rh/55Fe(001), 68Rh/32Fe(001) bilayers from room temperature to 800 °C. For all bilayers the non-magnetic nanocrystalline phase with a B2 structure (nfm-B2) is the first phase that is formed on the Rh/Fe(001) interface near 100 °C. Above 300 °C, without changing the nanocrystalline B2 structure, the phase grows into the low-magnetization modification αlʹ (MSl ~ 825 emu/cm3) of the ferromagnetic αʹ phase which has a reversible αlʹ ↔ αʺ transition. After annealing 52Rh/48Fe(001) bilayers above 600 °C the αlʹ phase increases in grain size and either develops into αhʹ with high magnetization (MSh ~ 1,220 emu/cm3) or remains in the αlʹ phase. In contrast to αlʹ, the αhʹ ↔ αʺ transition in the αhʹ films is completely suppressed. When the annealing temperature of the 45Rh/55Fe(001) samples is increased from 450 to 800 °C the low-magnetization nanocrystalline αlʹ films develop into high crystalline perfection epitaxial αhʹ(001) layers, which have a high magnetization of ~ 1,275 emu/cm3. αhʹ(001) films do not undergo a transition to an antiferromagnetic αʺ phase. In 68Rh/32Fe(001) samples above 500 °C non-magnetic epitaxial γ(001) layers grow on the Fe(001) interface as a result of the solid-state reaction between the epitaxial αlʹ(001) and polycrystalline Rh films. Our results demonstrate not only the complex nature of chemical interactions at the low-temperature synthesis of the nfm-B2 and αlʹ phases in Rh/Fe(001) bilayers, but also establish their continuous link with chemical mechanisms underlying reversible αlʹ ↔ αʺ transitions. |
Databáze: | OpenAIRE |
Externí odkaz: |