On the local systolic optimality of Zoll contact forms

Autor: Abbondandolo, Alberto, Benedetti, Gabriele
Přispěvatelé: Mathematics
Rok vydání: 2023
Předmět:
Zdroj: Geometric and Functional Analysis, 33(2), 299-363. Birkhauser Verlag Basel
Abbondandolo, A & Benedetti, G 2023, ' On the local systolic optimality of Zoll contact forms ', Geometric and Functional Analysis, vol. 33, no. 2, pp. 299-363 . https://doi.org/10.1007/s00039-023-00624-z
ISSN: 1420-8970
1016-443X
Popis: We prove a normal form for contact forms close to a Zoll one and deduce that Zoll contact forms on any closed manifold are local maximizers of the systolic ratio. Corollaries of this result are: (i) sharp local systolic inequalities for Riemannian and Finsler metrics close to Zoll ones, (ii) the perturbative case of a conjecture of Viterbo on the symplectic capacity of convex bodies, (iii) a generalization of Gromov's non-squeezing theorem in the intermediate dimensions for symplectomorphisms that are close to linear ones.
63 pages; v3: perturbative version of the Viterbo conjecture now proven for arbitrary symplectic capacities, added more properties to the normal form, added a statement on the local rigidity of Zoll contact forms
Databáze: OpenAIRE