On the local systolic optimality of Zoll contact forms
Autor: | Abbondandolo, Alberto, Benedetti, Gabriele |
---|---|
Přispěvatelé: | Mathematics |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Geometric and Functional Analysis, 33(2), 299-363. Birkhauser Verlag Basel Abbondandolo, A & Benedetti, G 2023, ' On the local systolic optimality of Zoll contact forms ', Geometric and Functional Analysis, vol. 33, no. 2, pp. 299-363 . https://doi.org/10.1007/s00039-023-00624-z |
ISSN: | 1420-8970 1016-443X |
Popis: | We prove a normal form for contact forms close to a Zoll one and deduce that Zoll contact forms on any closed manifold are local maximizers of the systolic ratio. Corollaries of this result are: (i) sharp local systolic inequalities for Riemannian and Finsler metrics close to Zoll ones, (ii) the perturbative case of a conjecture of Viterbo on the symplectic capacity of convex bodies, (iii) a generalization of Gromov's non-squeezing theorem in the intermediate dimensions for symplectomorphisms that are close to linear ones. 63 pages; v3: perturbative version of the Viterbo conjecture now proven for arbitrary symplectic capacities, added more properties to the normal form, added a statement on the local rigidity of Zoll contact forms |
Databáze: | OpenAIRE |
Externí odkaz: |