A parts-based approach for automatic 3D shape categorization using belief functions

Autor: Jean-Philippe Vandeborre, Mohamed Daoudi, Olivier Colot, Hedi Tabia
Přispěvatelé: LAGIS-SI, Laboratoire d'Automatique, Génie Informatique et Signal (LAGIS), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), FOX MIIRE (LIFL), Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), Institut TELECOM/TELECOM Lille1, Institut Mines-Télécom [Paris] (IMT), Vandeborre, Jean-Philippe
Rok vydání: 2013
Předmět:
Zdroj: ACM Transactions on Intelligent Systems and Technology
ACM Transactions on Intelligent Systems and Technology, ACM, 2013, 4 (2), pp.33:1-33:16
ACM Transactions on Intelligent Systems and Technology, 2013, 4 (2), pp.33:1-33:16
ISSN: 2157-6912
2157-6904
DOI: 10.1145/2438653.2438668
Popis: International audience; Grouping 3D-objects into (semantically) meaningful categories is a challenging and important problem in 3D-mining and shape processing. Here, we present a novel approach to categorize 3D-objects. The method described in this paper, is a belief function based approach and consists of two stages. The training stage, where 3D-objects in the same category are processed and a set of representative parts is constructed, and the labeling stage, where unknown objects are categorized. The experimental results obtained on the Tosca- Sumner and the Shrec07 datasets show that the system efficiently performs in categorizing 3D-models.
Databáze: OpenAIRE