Robustness of topological corner modes against disorder with application to acoustic networks

Autor: Antonin Coutant, Georgios Theocharis, Vincent Pagneux, Vassos Achilleos, Olivier Richoux
Přispěvatelé: Laboratoire d'Acoustique de l'Université du Mans (LAUM), Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM), Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)
Rok vydání: 2020
Předmět:
Zdroj: Physical Review B
Physical Review B, American Physical Society, 2020, 102 (21), pp.214204. ⟨10.1103/PhysRevB.102.214204⟩
ISSN: 2469-9950
2469-9969
DOI: 10.1103/physrevb.102.214204
Popis: We study the two-dimensional extension of the Su-Schrieffer-Heeger model in its higher order topological insulator phase, which is known to host corner states. Using the separability of the model into a product of one-dimensional Su-Schrieffer-Heeger chains, we analytically describe the eigen-modes, and specifically the zero-energy level, which includes states localized in corners. We then consider networks with disordered hopping coefficients that preserve the chiral (sublattice) symmetry of the model. We show that the corner mode and its localization properties are robust against disorder if the hopping coefficients have a vanishing flux on appropriately defined super plaquettes. We then show how this model with disorder can be realised using an acoustic network of air channels, and confirm the presence and robustness of corner modes.
18 pages, 13 figures. V2: small clarifications added, subsections of section III re-ordered, color scales added on figures, new appendix B-2
Databáze: OpenAIRE