New Fixed Time and Fast Converging Reduced Order Observers

Autor: Mazenc, Frederic, Malisoff, Michael
Přispěvatelé: CentraleSupélec, Dynamical Interconnected Systems in COmplex Environments (DISCO), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics [Baton Rouge] (LSU Mathematics), Louisiana State University (LSU), Supported by NSF Grants 1711299 and 2009659 (Malisoff)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: CDC2021-Conference on Decision and Control
CDC2021-Conference on Decision and Control, Dec 2021, Austin, United States
Popis: International audience; For nonlinear continuous-time systems with continuous measurements of the output, we provide new reduced order observers that converge in finite time. The convergence time is independent of the initial state. For cases where the measurements are discrete, we provide asymptotically converging observers, whose rate of convergence is proportional to the negative of the logarithm of the size of the sampling interval. Our observers are based on the observability Gramian.
Databáze: OpenAIRE