Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset Type I diabetes mellitus
Autor: | Shigekazu Nagata, Jun-ichiro Miyagawa, K. Yamamoto, Mitsuyoshi Namba, Yuji Matsuzawa, T. Hanafusa, Akihisa Imagawa, H. Nakajima, Makoto Moriwaki, Kazuya Yamagata, Hiromi Iwahashi, Naoto Itoh |
---|---|
Rok vydání: | 1999 |
Předmět: |
Adult
Male medicine.medical_specialty Cell type Fas Ligand Protein Adolescent Endocrinology Diabetes and Metabolism Biology Fas ligand Islets of Langerhans Internal medicine In Situ Nick-End Labeling Internal Medicine medicine Humans Cytotoxic T cell fas Receptor Pancreas Inflammation Membrane Glycoproteins Pancreatic islets Middle Aged medicine.disease Immunohistochemistry Diabetes Mellitus Type 1 Phenotype medicine.anatomical_structure Endocrinology Apoptosis Cancer research Female Insulitis CD8 |
Zdroj: | Diabetologia. 42:1332-1340 |
ISSN: | 1432-0428 0012-186X |
DOI: | 10.1007/s001250051446 |
Popis: | Aims/hypothesis. Type I (insulin-dependent) diabetes results mainly from T-cell-mediated autoimmune destruction of pancreatic beta cells. Cytotoxic T lymphocytes destroy target cells via a perforin-based or Fas-based mechanism. Our previous study indicated that the Fas-Fas ligand (FasL) pathway is required for the development of autoimmune diabetes in the NOD mouse. We now investigated whether or not the Fas-FasL system is involved in the beta-cell destruction in human Type I diabetes. Methods. We immunohistochemically analysed pancreas biopsy specimens of 13 recent-onset patients. Results. Pancreatic islets were identified but showed various degrees of reduction in beta-cell volume in all patients. Out of 13 patients 6 had insulitis. In these 6 patients Fas was expressed in both the islets and infiltrating cells but not in either cell type in the 7 other patients without insulitis. Double immunostaining showed that Fas was positive in 92.2 to 97.7 % of beta cells but only in 17.6 to 46.7 % of alpha cells in Fas-positive, insulin-remaining islets. We found FasL was expressed exclusively in islet-infiltrating cells in patients with insulitis. Double immunostaining revealed that the most prevalent phenotype of FasL-positive cells was CD8, which was followed by macrophages and CD4. Conclusion/interpretation. The interaction between Fas on beta cells and FasL on infiltrating cells might trigger selective apoptotic beta-cell death in inflamed islets, leading to immune-mediated Type I diabetes. [Diabetologia (1999) 42: 1332–1340] |
Databáze: | OpenAIRE |
Externí odkaz: |