Nested cycles with no geometric crossings
Autor: | Fern��ndez, Irene Gil, Kim, Jaehoon, Kim, Younjin, Liu, Hong |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Proceedings of the American Mathematical Society, Series B. 9:22-32 |
ISSN: | 2330-1511 |
DOI: | 10.1090/bproc/107 |
Popis: | In 1975, Erd\H{o}s asked the following question: what is the smallest function $f(n)$ for which all graphs with $n$ vertices and $f(n)$ edges contain two edge-disjoint cycles $C_1$ and $C_2$, such that the vertex set of $C_2$ is a subset of the vertex set of $C_1$ and their cyclic orderings of the vertices respect each other? We prove the optimal linear bound $f(n)=O(n)$ using sublinear expanders. Comment: 10 pages, 2 figures |
Databáze: | OpenAIRE |
Externí odkaz: |